

CAK

National Laboratory

Measurements of Heat Flux Profiles for the FY2010 Joint Research Milestone

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U Purdue U SNI Think Tank. Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Marvland **U** Rochester **U** Washington **U Wisconsin**

R. Maingi, J-W. Ahn, T.K. Gray, A.G. McLean NSTX Research Forum Princeton, NJ Dec. 1-3, 2009

U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Additional data (and lots of analysis!) needed to fulfill FY2010 Joint Research Milestone on SOL thermal transport

- ✓ Wide P_{NBI} and moderate I_p scans at low δ ~0.5 (2004, 2009)
 - Slow IR camera data (Maingi JNM 2007, Maingi EPS 2007)
 - New fast IR camera data being analyzed (Ahn, RSI 2009 submitted)
- ✓ Nice I_p scan and flux expansion scans at δ ~ 0.7, coarse NBI scan (2008)
 - Piggyback on detachment study (Soukhanovskii NF 2009, EPS2009)
- Desired: higher I_p range at high δ
 - divertor bolometers not ready at time of 2009 XP; ok for 2010?
- Desired: B_t scan at constant I_p , q_{95}
- Desired: power balance vs. magnetic balance (δ_r^{sep})
- Desired: data from scaled poloidal shape match to C-Mod
- Desired: Snowflake divertor shape effects (piggyback)
- ➢ If TMB disallowed, then 2color IR <u>required</u>!

FY2010 Joint Research Milestone: Thermal Transport in the Scrape-off Layer

- Conduct experiments on major fusion facilities to improve understanding of the heat transport in the tokamak scrape
 off layer (SOL) plasma, strengthening the basis for projecting divertor conditions in ITER.
- Divertor heat flux profiles and plasma characteristics in the tokamak scrape-off layer will be measured in multiple devices to investigate the underlying thermal transport processes. The unique characteristics of C-Mod, DIII-D, and NSTX will enable collection of data over a broad range of SOL and divertor parameters (e.g., collisionality, beta, parallel heat flux, and divertor geometry). Coordinated experiments using common analysis methods will generate a data set that will be compared with theory and simulation.

XP923: SOL width contracts with P_{NBI}

- Run early in year pre-Li
 - Obtained slow IR, fast IR (low δ), D_{α} cameras, GPI
 - New divertor bolometer channels unavailable
- Obtained a nice $\mathsf{P}_{\mathsf{NBI}}$ scan at low $\delta_{\mathsf{bot}} \text{~~} 0.5$
 - ELMs change
 - SOL heat flux width contracts with $\mathsf{P}_{\mathsf{NBI}}$
- To do: analyze fast IR, turbulence, D_α data

XP923: SOL width contracts with I_p

- Obtained a nice I_p scan at low $\delta_{bot} \sim 0.5$
 - ELMs change
 - SOL heat flux width clearly contracts with I_p

XP814: Peak heat flux (width) varies directly (inversely) with plasma current at high δ

- λ_q^{mid} dependence on I_p seems to connect to the low δ data from XP 923 smoothly(!)
 - λ_q^{mid} down to 2mm observed in these conditions, with $q_{||}$ up to 300 MW/m²
- ✓ Peak heat flux and detachment reported at IAEA 2008 in Soukhanovskii's paper (NF 2009)

High δ ~ 0.7

NSTX

Dec. 1-3, 2009

XP816: Peak heat flux (width) varies inversely (directly) with flux expansion at high δ

- λ_{q}^{mid} stays approximately constant during the scan
- Large variability need to refine analysis to see if error bars can be reduced
- ✓ Partly reported at EPS 2009 in Vlad's paper

NSTX

amdaq_mid [cm]

1.4

1.2

1.0

8.0

0.6

0.4

0.2

0.0

0

High δ ~ 0.7

Additional data (and lots of analysis) needed to fulfill FY2010 Joint Research Milestone on SOL thermal transport

- ✓ Wide P_{NBI} and moderate I_p scans at low δ ~0.5 (2004, 2009)
 - Slow IR camera data (Maingi JNM 2007, Maingi EPS 2007)
 - New fast IR camera data being analyzed (Ahn, RSI 2009 submitted)
- ✓ Nice I_p scan and flux expansion scans at δ ~ 0.7, coarse NBI scan (2008)
 - Piggyback on detachment study (Soukhanovskii NF 2009, EPS2009)
- Desired: higher I_p range <u>up to1.4-1.5 MA</u> at high δ
 - divertor bolometers ok for 2010?
- Desired: B_t scan (0.4-0.55 T) at constant I_p , q_{95}
- Desired: power balance vs. δ_r^{sep} (esp. near $\delta_r^{sep} = 0$)
- Desired: data from scaled poloidal shape match to C-Mod (e.g. from XP721: $\delta \sim 0.5$, $\kappa=1.8$, large δ_r^{sep})
- Desired: Snowflake divertor shape effects (piggyback on new data from Vlad's 2010 XP – extend flux expansion scan)

